5 resultados para Orchard Grass

em Universitätsbibliothek Kassel, Universität Kassel, Germany


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Productivity, botanical composition and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. As these attributes can vary considerably within a field, a non-destructive method of detection while doing other tasks would facilitate a more targeted management of crops, forage and nutrients in the soil-plant-animal system. This study was undertaken to explore the potential of field spectral measurements for a non destructive prediction of dry matter (DM) yield, legume proportion in the sward, metabolizable energy (ME), ash content, crude protein (CP) and acid detergent fiber (ADF) of legume-grass mixtures. Two experiments were conducted in a greenhouse under controlled conditions which allowed collecting spectral measurements which were free from interferences such as wind, passing clouds and changing angles of solar irradiation. In a second step this initial investigation was evaluated in the field by a two year experiment with the same legume-grass swards. Several techniques for analysis of the hyperspectral data set were examined in this study: four vegetation indices (VIs): simple ratio (SR), normalized difference vegetation index (NDVI), enhanced vegetation index (EVI) and red edge position (REP), two-waveband reflectance ratios, modified partial least squares (MPLS) regression and stepwise multiple linear regression (SMLR). The results showed the potential of field spectroscopy and proved its usefulness for the prediction of DM yield, ash content and CP across a wide range of legume proportion and growth stage. In all investigations prediction accuracy of DM yield, ash content and CP could be improved by legume-specific calibrations which included mixtures and pure swards of perennial ryegrass and of the respective legume species. The comparison between the greenhouse and the field experiments showed that the interaction between spectral reflectance and weather conditions as well as incidence angle of light interfered with an accurate determination of DM yield. Further research is hence needed to improve the validity of spectral measurements in the field. Furthermore, the developed models should be tested on varying sites and vegetation periods to enhance the robustness and portability of the models to other environmental conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Summary: Productivity and forage quality of legume-grass swards are important factors for successful arable farming in both organic and conventional farming systems. For these objectives the botanical composition of the swards is of particular importance, especially, the content of legumes due to their ability to fix airborne nitrogen. As it can vary considerably within a field, a non-destructive detection method while doing other tasks would facilitate a more targeted sward management and could predict the nitrogen supply of the soil for the subsequent crop. This study was undertaken to explore the potential of digital image analysis (DIA) for a non destructive prediction of legume dry matter (DM) contribution of legume-grass mixtures. For this purpose an experiment was conducted in a greenhouse, comprising a sample size of 64 experimental swards such as pure swards of red clover (Trifolium pratense L.), white clover (Trifolium repens L.) and lucerne (Medicago sativa L.) as well as binary mixtures of each legume with perennial ryegrass (Lolium perenne L.). Growth stages ranged from tillering to heading and the proportion of legumes from 0 to 80 %. Based on digital sward images three steps were considered in order to estimate the legume contribution (% of DM): i) The development of a digital image analysis (DIA) procedure in order to estimate legume coverage (% of area). ii) The description of the relationship between legume coverage (% area) and legume contribution (% of DM) derived from digital analysis of legume coverage related to the green area in a digital image. iii) The estimation of the legume DM contribution with the findings of i) and ii). i) In order to evaluate the most suitable approach for the estimation of legume coverage by means of DIA different tools were tested. Morphological operators such as erode and dilate support the differentiation of objects of different shape by shrinking and dilating objects (Soille, 1999). When applied to digital images of legume-grass mixtures thin grass leaves were removed whereas rounder clover leaves were left. After this process legume leaves were identified by threshold segmentation. The segmentation of greyscale images turned out to be not applicable since the segmentation between legumes and bare soil failed. The advanced procedure comprising morphological operators and HSL colour information could determine bare soil areas in young and open swards very accurately. Also legume specific HSL thresholds allowed for precise estimations of legume coverage across a wide range from 11.8 - 72.4 %. Based on this legume specific DIA procedure estimated legume coverage showed good correlations with the measured values across the whole range of sward ages (R2 0.96, SE 4.7 %). A wide range of form parameters (i.e. size, breadth, rectangularity, and circularity of areas) was tested across all sward types, but none did improve prediction accuracy of legume coverage significantly. ii) Using measured reference data of legume coverage and contribution, in a first approach a common relationship based on all three legumes and sward ages of 35, 49 and 63 days was found with R2 0.90. This relationship was improved by a legume-specific approach of only 49- and 63-d old swards (R2 0.94, 0.96 and 0.97 for red clover, white clover, and lucerne, respectively) since differing structural attributes of the legume species influence the relationship between these two parameters. In a second approach biomass was included in the model in order to allow for different structures of swards of different ages. Hence, a model was developed, providing a close look on the relationship between legume coverage in binary legume-ryegrass communities and the legume contribution: At the same level of legume coverage, legume contribution decreased with increased total biomass. This phenomenon may be caused by more non-leguminous biomass covered by legume leaves at high levels of total biomass. Additionally, values of legume contribution and coverage were transformed to the logit-scale in order to avoid problems with heteroscedasticity and negative predictions. The resulting relationships between the measured legume contribution and the calculated legume contribution indicated a high model accuracy for all legume species (R2 0.93, 0.97, 0.98 with SE 4.81, 3.22, 3.07 % of DM for red clover, white clover, and lucerne swards, respectively). The validation of the model by using digital images collected over field grown swards with biomass ranges considering the scope of the model shows, that the model is able to predict legume contribution for most common legume-grass swards (Frame, 1992; Ledgard and Steele, 1992; Loges, 1998). iii) An advanced procedure for the determination of legume DM contribution by DIA is suggested, which comprises the inclusion of morphological operators and HSL colour information in the analysis of images and which applies an advanced function to predict legume DM contribution from legume coverage by considering total sward biomass. Low residuals between measured and calculated values of legume dry matter contribution were found for the separate legume species (R2 0.90, 0.94, 0.93 with SE 5.89, 4.31, 5.52 % of DM for red clover, white clover, and lucerne swards, respectively). The introduced DIA procedure provides a rapid and precise estimation of legume DM contribution for different legume species across a wide range of sward ages. Further research is needed in order to adapt the procedure to field scale, dealing with differing light effects and potentially higher swards. The integration of total biomass into the model for determining legume contribution does not necessarily reduce its applicability in practice as a combined estimation of total biomass and legume coverage by field spectroscopy (Biewer et al. 2009) and DIA, respectively, may allow for an accurate prediction of the legume contribution in legume-grass mixtures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The traditional control of Imperata brasiliensis grasslands used by farmers in the Peruvian Amazon is to burn the grass. The objective of this study was to compare different methods of short-term control. Biological, mechanical, chemical and traditional methods of control were compared. Herbicide spraying and manual weeding have shown to be very effective in reducing above- and below-ground biomass growth in the first 45 days after slashing the grass, with effects persisting in the longer term, but both are expensive methods. Shading seems to be less effective in the short-term, whereas it influences the Imperata growth in the longer term. After one year shading, glyphosate application and weeding significantly reduced aboveground biomass by 94, 67 and 53%; and belowground biomass by 76, 65 and 58%, respectively, compared to control. We also found a significant decrease of Imperata rhizomes in soil during time under shading. Burning has proved to have no significant effect on Imperata growth. The use of shade trees in a kind of agroforestry system could be a suitable method for small farmers to control Imperata grasslands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Städtische Biomassen der Grünflächen bilden eine potentielle, bisher weitgehend ungenutzte Ressource für Bioenergie. Kommunen pflegen die Grünflächen, lassen das Material aber verrotten oder führen es Deponien oder Müllverbrennungsanlagen zu. Diese Praxis ist kostenintensiv ohne für die Verwaltungen finanziellen Ausgleich bereitzustellen. Stattdessen könnte das Material energetisch verwertet werden. Zwei mögliche Techniken, um Bioenergie zu gewinnen, wurden mit krautigem Material des städtischen Straßenbegleitgrüns untersucht i) direkte anaerobe Fermentation (4 Schnitte im Jahr) und ii) „Integrierte Festbrennstoff- und Biogasproduktion aus Biomasse“ (IFBB), die Biomasse durch Maischen und mechanisches Entwässern in einen Presssaft und einen Presskuchen trennt (2 Schnitte im Jahr). Als Referenz wurde die aktuelle Pflege ohne Verwertungsoption mitgeführt (8faches Mulchen). Zusätzlich wurde die Eignung von Gras-Laub-Mischungen im IFBB-Verfahren untersucht. Der mittlere Biomasseertrag war 3.24, 3.33 und 5.68 t Trockenmasse ha-1 jeweils für die Pflegeintensitäten Mulchen, 4-Schnitt- und 2-Schnittnutzung. Obwohl die Faserkonzentration in der Biomasse der 2-Schnittnutzung höher war als im Material der 4-Schnittnutzung, unterschieden sich die Methanausbeuten nicht signifikant. Der Presskuchen aus dem krautigen Material des Straßenbegleitgrüns hatte einen Heizwert von 16 MJ kg-1 Trockenmasse, während der Heizwert des Presskuchens der Gras-Laub-Mischung in Abhängigkeit vom Aschegehalt zwischen 15 und 17 MJ kg-1 Trockenmasse lag. Der Aschegehalt der Mischungen war höher als der Grenzwert nach DIN EN 14961-6:2012 (für nicht-holzige Brennstoffe), was auf erhöhte Bodenanhaftung auf Grund der Erntemethoden zurückzuführen sein könnte. Der Aschegehalt des krautigen Materials vom Straßenrand hielt die Norm jedoch ein. Die Elementkonzentration (Ca, Cl, K, Mg, N, Na, P, S, Al, Cd, Cr, Cu, Mn, Pb, Si, Zn) im krautigen Material war generell ähnlich zu Landwirtschafts- oder Naturschutzgrünland. In den Mischungen nahm die Elementkonzentration (Al, Cl, K, N, Na, P, S, Si) mit zunehmendem Laubanteil ab. Die Konzentration von Ca, Mg und der Neutral-Detergenz-Fasern stieg hingegen an. Die IFBB-Technik reduzierte die Konzentrationen der in der Verbrennung besonders schädlichen Elemente Cl, K und N zuverlässig. Außer den potentiell hohen Aschegehalten, wurde während der Untersuchungen kein technischer Grund entdeckt, der einer energetischen Verwertung des getesteten urbanen Materials entgegenstehen würde. Ökonomische, soziale und ökologische Auswirkungen einer Umsetzung müssen beachtet werden. Eine oberflächliche Betrachtung auf Basis des bisherigen Wissens lässt hoffen, dass eine bioenergetische Verwertung städtischen Materials auf allen Ebenen nachhaltig sein könnte.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beef production can be environmentally detrimental due in large part to associated enteric methane (CH4) production, which contributes to climate change. However, beef production in well-managed grazing systems can aid in soil carbon sequestration (SCS), which is often ignored when assessing beef production impacts on climate change. To estimate the carbon footprint and climate change mitigation potential of upper Midwest grass-finished beef production systems, we conducted a partial life cycle assessment (LCA) comparing two grazing management strategies: 1) a non-irrigated, lightly-stocked (1.0 AU/ha), high-density (100,000 kg LW/ha) system (MOB) and 2) an irrigated, heavily-stocked (2.5 AU/ha), low-density (30,000 kg LW/ha) system (IRG). In each system, April-born steers were weaned in November, winter-backgrounded for 6 months and grazed until their endpoint the following November, with average slaughter age of 19 months and a 295 kg hot carcass weight. As the basis for the LCA, we used two years of data from Lake City Research Center, Lake City, MI. We included greenhouse gas (GHG) emissions associated with enteric CH4, soil N2O and CH4 fluxes, alfalfa and mineral supplementation, and farm energy use. We also generated results from the LCA using the enteric emissions equations of the Intergovernmental Panel on Climate Change (IPCC). We evaluated a range of potential rates of soil carbon (C) loss or gain of up to 3 Mg C ha-1 yr-1. Enteric CH4 had the largest impact on total emissions, but this varied by grazing system. Enteric CH4 composed 62 and 66% of emissions for IRG and MOB, respectively, on a land basis. Both MOB and IRG were net GHG sources when SCS was not considered. Our partial LCA indicated that when SCS potential was included, each grazing strategy could be an overall sink. Sensitivity analyses indicated that soil in the MOB and IRG systems would need to sequester 1 and 2 Mg C ha-1 yr-1 for a net zero GHG footprint, respectively. IPCC model estimates for enteric CH4 were similar to field estimates for the MOB system, but were higher for the IRG system, suggesting that 0.62 Mg C ha-1 yr-1 greater SCS would be needed to offset the animal emissions in this case.